The measurement equation for a millimeter interferometer is to a good
approximation (after calibration)

(5.1) |

To image a field-of-view larger than the primary beam size, the antennae of an interferometer will be successively pointed in different directions of the sky typically separated by half the size of the primary beam. This process is called mosaicing and the result requires specific imaging and deconvolution steps. Another possibility is to acquire data as the interferometer antenna continuously slew through a portion of the sky. This second observing mode is called interferometric On-The-Fly (OTF). While mosaicing is standard at PdBI (see section ), some efforts are currently done to commission the OTF observing mode.

Mosaicing and OTF clearly belongs to wide-field imaging. However
considerations about wide-field imaging start as soon as the size of the
source is larger than about 1/3 to 1/2 of the interferometer primary beam.
Indeed, a multiplicative interferometer (*e.g.* all interferometer in the
(sub)mm range) is a bandpass instrument, *i.e.* it filters not only the large
spatial frequencies (this is the effect of the finite resolution of the
instrument) but also the small spatial frequencies (all the frequencies
smaller than typically the diameter of the interferometer antennas). An
important consequence is that a multiplicative interferometer do *not*
measure the total flux of the observed source. This derives immediately
from the following property of the Fourier Transform: The Fourier transform
of a function evaluated at zero spacial frequency is equal to the integral
of your function. Adapting this to our notation, this gives

(5.2) |

Deconvolution algorithms use, in one way or another, the information of the
flux at the smallest *measured* spatial frequencies to extrapolate the
total flux of the source. This works correctly when the size of the source
is small compared to the primary beam of the interferometer. The extreme
case is a point source at the phase center for which the amplitude of all
the visibilities is constant and equal to the total flux of the source:
Extrapolation is then exact. However, the larger the size of the source,
the worst the extrapolation, which then underestimates the total source
flux. This is the well-known problem of the missing flux that observers
sometimes note when comparing the flux of the source delivered by a mm
interferometer with the flux observed with a single-dish antenna. The
transition between right and wrong extrapolation is not well documented. It
depends on the repartition of the flux with spatial frequencies but also of
the signal-to-noise ratio of the measured spatial frequencies. It is often
agreed that the transition happens for sizes between 1/3 and 1/2 of the
interferometer primary beam. For larger source size, information from a
single-dish telescope is needed to fill in the missing information and to
thus obtain a correct result. This is the object of
section .